Evidence for a bottom baryon resonance Λ_b^{*0} in CDF data

Prabhakar Palni (On behalf of CDF Collaboration)

Department of Physics & Astronomy, University of New Mexico, USA

DPF 2013 Meeting University of California, Santa Cruz 12-17 August 2013

Outline of the talk

- The Tevatron and the CDF II Detector
- Motivation and Bottom Baryon Resonance states Λ_b^{*0}
- Data Sample and Trigger
- Analysis and Fit Model
- Systematic Uncertainties
- Results and Conclusions

The Tevatron Accelerator at Fermilab near Chicago

Statistics

- The Tevatron collided p with \bar{p} at 1.96TeV center of mass energy from 2001-2011
- Instantaneous Luminosity upto 4x10³²cm⁻²s⁻¹
- $\int \mathcal{L} dt \simeq 12.0 \, \text{fb}^{-1} \, \text{delivered}$
- $\int \mathcal{L} dt \simeq 10.0 \, \text{fb}^{-1}$ on tape, accessible for **CDF II**

CDF Detector

- Silicon Vertex Detector, Drift Chamber and Muon Detectors.
- B=1.4T and the transverse momentum resolution of the tracking system is $\sigma(p_T)/p_T^2 \simeq 0.07\%/(\text{GeV/}c)$

Motivation

- Baryons with a heavy quark Q and a light diquark q₁q₂ (Helium atoms of QCD) are useful for probing QCD in its confinement domain.
- Observing a new HQ baryons, measuring properties provides constraints to QCD models
 - Quark potential models: non-relativistic, relativistic
 - HQET framework at LO and NLO in 1/m_Q, 1/N_c combined expansions
- Goal of the analysis: search for the resonant states in $\Lambda_b^0 \, \pi^- \, \pi^+$ modes.

- $m_Q\gg \Lambda_{QCD}\gg m_{qq}$
- $m_Q \simeq 4.8 \, GeV, \, Q \equiv b$
- HQET: S_Q decouples from (q_1q_2) degrees of freedoms.

Pion Transitions into Λ_b^0 Singlet.

- HQET: pion transitions are governed by the light diquark.
- Resonant, *S*-wave, Σ -like states: $\Sigma_h^{(*)\pm} \to \Lambda_h^0 \pi^\pm$
 - single-pion π^\pm in *P*-wave with $qq(1^+) o qq(0^+) + \pi^\pm_{0^- \otimes 1^-}$
- Orbital excitations, P-wave, Λ -like states: $\Lambda_b^{*0} \to \Lambda_b^0 \, \pi^+ \pi^-$ given sufficient phase space.
 - single-pion π^0 forbidden due to:
 - isospin conservation,
 - parity conservation (strong decays)
 - di-pion $\pi^+\pi^-$ are soft and emitted in *P*-wave with $qq(1^-) \rightarrow qq(0^+) + (\pi^+\pi^-)_{1^-}$

Experimental Status

$\Sigma_{b}^{(*)\pm}$ in CDF: PRD **85**, 092011 (2012)

- CDF first observation, then measurements: $\Sigma_h^{(*)\pm}$ resonances
- LHCb observation: $\Lambda_b^{*0}(5912)$ and $\Lambda_b^{*0}(5920)$, interpreted as $J^P = \frac{1}{2}^-$ and $J^P = \frac{3}{2}^-$ resonant states.
- CMS observation: bottom-strange Ξ_b^{*0} , interpreted as $J^P = \frac{3}{2}^+$ resonant state.
- CDF, D0 observations: ground bottom-strange Ξ_b
- CDF, D0 observations: ground bottom doubly-strange Ω_b^-
- CDF observation: ground neutral bottom-strange baryon ∑_b⁰

Decay Chain of Λ_b^{*0}

Two Displaced Track Trigger

b-Triggers at @1.96 TeV

- Enormous inelastic total crosssection of $\sigma_{
 m tot}^{
 m inel} \sim 60~{
 m mb}$
- $\sigma_{\mathbf{b}} \approx 20 \,\mu \mathrm{b} \, (|\eta| < 1.0),$ @1.96 TeV
- Trigger on Hadronic Modes: CDF Two Track Trigger
 - Exploit long $c\tau$ (b-hadrons)
 - $p_T \ge 2$ GeV/c for each of the two tracks
 - Trigger on \geq 2 tracks with large $|d_0|$

$|d_0|$ Resolution \oplus beam-line = 47 $\mu \mathrm{m}$

Analysis Criteria

- Total CDF Luminosity of $\int \mathcal{L} \, dt \approx 9.6 \, \text{fb}^{-1}$
- Reconstruct inclusive base Λ_b^0 signal in $M(\Lambda_c^+\pi_b^-)$, a pion π_b^- produced in the weak decay $\Lambda_b^0 \to \Lambda_c^+\pi_b^-$.
- Combine Λ_b^0 signal candidates with two soft pions to reconstruct $\Lambda_b^{*0} \to \Lambda_b^0 \pi_s^- \pi_s^+$ candidates.
- require $p_{\rm T}(\Lambda_b^0)$ to be large to get soft π_s^\pm within the detector kinematical acceptance

• $p_{\rm T}(\Lambda_b^0) > 9.0 \,{\rm GeV}/c, \, ct(\Lambda_b^0)/\sigma_{Ct} > 6.0$

•
$$p_{\rm T}(\pi_b^-) > 1.0 \,{\rm GeV}/c$$
 $N(\Lambda_b^0) \approx 15400$

- $p_{\rm T}(\pi_s^{\pm}) > 0.2\,{\rm GeV}/c$, loose trk. req-s.
- $|d_0/\sigma_{d_0}|(\pi_s^{\pm}) < 3.0$, w.r.t. primary VX.

Signal Model and Scale

We reconstruct Λ_b^{*0} candidates in a mass difference spectrum: Q value

$$Q = M(\Lambda_b^0 \pi_s^+ \pi_s^-) - m(\Lambda_b^0) - 2 \cdot m(\pi^{\pm})$$

The mass resolution of the Λ_b^0 signal and most of the systematic uncertainties cancel in the Q value spectrum.

- The signal: double Gaussian to model the detector resolution; shape fixed from MC; position Q and N_{cands} floating.
- The background: second order polynomial; floating.
- The full model for the *Q* value spectra: a single narrow structure on top of a smooth background.
- Use high statistics CDF $D^{*+} \to D^0 \pi_s^+$ sample to analyze the soft pions momentum scale for $\Lambda_b^{*0} \to \pi_s^- \pi_s^+$ candidates.
 - Adjust scale: $Q(\Lambda_b^{*0}) = Q(\Lambda_b^{*0}) 0.28$, MeV/ c^2 ,
 - set 100% syst. uncertainty: -0.28 ± 0.28 (syst) MeV/ c^2

Q- Spectrum and Results: Λ_b^{*0}

The projection of the unbinned LH fit onto the binned distribution of the **raw Q** spectrum of Λ_h^{*0} candidates.

Λ	*0 ·b	
Parameters	Value	
Q , MeV/ c^2	$\textbf{20.96} \pm \textbf{0.35}$	
N, evts	$17.3^{+5.3}_{-4.6}$	
Scale Adjusted Q-value		
Q , MeV/ c^2	$\textbf{20.68} \pm \textbf{0.35}$	

Significance of the Signal

Significance Estimated with toy MC expts.

- Generate Null Hypothesis \mathcal{H}_0 , fit with \mathcal{H}_1
- Parameter of interest , N_{cands}
- Signal position Q left floating within [6.0, 45.0] ${
 m MeV}/c^2$ search window
- Signal shape fixed
- Background shape floating
- p-value = $2.3 * 10^{-4}$ or 3.5σ

Systematic Uncertainties

- Momentum Scale:
 - B field knowledge,
 - Uncertainty due to detector material on the dE/dx correction.
- Detector resolution model and its parameters.
- Choice of the background model.
- Systematics propagated from the previous CDF measurement of the \varLambda_b^0 mass.

 Λ_b^{*0} in CDF data

Systematics Uncertainties

Source	Value , MeV/ c^2	Comment
Momentum scale	±0.28	propagated from high statistics calibration D^{*+} sample; 100% of the found adjustment value.
Signal model	±0.11	MC underestimates the resolution; choice of the model's parameters
MC resolution stat. uncertainty	±0.012	finite MC sample size induces the stat. uncertainty of the shape parameters.
Background model	±0.03	consider 3-rd, 4-th power polynomials
Total:	±0.30	added in quadrature

Results

Results on Λ_b^{*0} with $\int \mathcal{L} dt \approx 9.6 \, \text{fb}^{-1}$.

Value	MeV/c^2
Q	$20.68 \pm 0.35 (\text{stat}) \pm 0.30 (\text{syst})$
ΔM	$299.82 \pm 0.35(stat) \pm 0.30(syst)$
$M(\Lambda_b^{*0})$	$5919.22\pm 0.35 (stat) \pm 0.30 (syst) \pm 0.70 (PDG)$
$M(\Lambda_b^{*0})$	5919.22 \pm 0.84

To determine the absolute masses for
$$\Lambda_b^{*0}$$
, $m(\Lambda_b^0) = 5619.4 \pm 0.7$, MeV/ c^2 (PDG 2012).

Comparison with LHCb

- Result is consistent with the higher state $\Lambda_b^{*0}(5920)$ found with $\int \mathcal{L} \, dt = 1.0 \, \text{fb}^{-1}$ at $\sqrt{s} = 7 \, \text{TeV}$ (year 2011) by LHCb
- LHCb reports also a state at $\approx 5912 \, \text{MeV}/c^2$ (same data)
- Assume
 - similar $\sigma \cdot B(\Lambda_b^{*0}(5912)) / \sigma \cdot B(\Lambda_b^{*0}(5920))$ similar $\epsilon(\Lambda_b^{*0}(5912)) / \epsilon(\Lambda_b^{*0}(5920))$, i.e \approx 1
- Then the lack of a visible $\Lambda_b^{*0}(5912)$ signal in the CDF II is statistically consistent within 2σ with the $\Lambda_b^{*0}(5912)$ reported by LHCb

Conclusions

- We conduct a search for the $\varLambda_b^{*0} \to \varLambda_b^0 \pi^- \pi^+$ resonance state in its Q value spectrum
- A narrow structure is identified at 5919.22 \pm 0.84 MeV/ c^2 mass.
- The significance of the signal is 3.5σ .
- The signal is attributed to the orbital excitation of the bottom baryon Λ_b^0
- The result supports similar findings by LHCb

Masses and Q-values of Λ_b^{*0} Resonance States

- $Q \equiv M(\Lambda_b^{*0} \to \Lambda_b^0 \pi^+ \pi^-)$ $M(\Lambda_b^0)$ $2m(\pi^\pm)$ i.e the amount of energy released by the decay reaction
- Various theoretical models predict that the mass of the first excited state Λ_b^{*0} , $(1/2)^-$ lies very close to the hadronic three-body mode threshold with Q=[20...47] MeV/ c^2
- The higher excited state, $\Lambda_b^{*0}(3/2)^-$ has Q=[2...17] MeV/ c^2 higher than the lower state.